
Proposal for: Requirements and Evaluation of

tool papers for PETRI NETS

Giuliana Franceschinis, Kees van Hee, Ekkart Kindler, Fabrice Kordon,
Lars M. Kristensen, and Karsten Wolf

Abstract. This paper gives guidelines for the publication of papers on
software tools, in particular for Petri net tools. The guidelines are illus-
trated by an example.

1 Introduction

In computer science in general and in the eld of Petri nets in par-
ticular, software tools are becoming more and more important. Often,
the scientic work in our eld results in algorithms and techniques that
can be supported by software tools, which can be applied either by re-
searchers or by practitioners to analyze or design complex systems. Soci-
ety is more and more expecting practical results from scientists. Hence,
in many cases, stand-alone scientic publications will not be enough in
the future.
For these reasons the PETRI NETS community (ocially: International
Conference on Application and Theory of Petri Nets) stimulates the de-
velopment of software tools by giving the opportunity to researchers to
publish tool papers in the proceedings of the PETRI NETS conferences.
Papers can be submitted in a special category tool paper to PETRI
NETS.
In the last years, there have been several problems with submitted tool
papers, and there has been a recurrent discussion on how a good tool pa-
per should look like. Some tool papers seemed to present a nice tool, but
the presentation was not really helpful to the audience of PETRI NETS.
Other tool papers looked very much like regular papers presenting some
algorithm or method; but the authors, for whichever reason, submitted
them as tool papers. Part of the problem was, that there are no clear
guidelines what a tool paper should cover and how a good tool paper
should look like. This paper should give some guidelines for writing as
well as for evaluating tool papers at PETRI NETS.

2 Requirements

This section states some basic requirement for tool papers and the pre-
sented tools. Clearly, the focus of a tool paper should be on the tool and
present the tool and its features, and the features should be presented
from a user’s point of view. It should not focus on the inner workings of
the tool, or on some algorithms and methods that could be published as
a regular paper.



Therefore, the most basic acceptance criterion is that the presented tool
is available for evaluation for the reviewers during the reviewing process
and, if the paper is accepted, for the readers. This does not require
that the tool is open or free software; but it requires that at least a
demo version with some documentation is freely available, preferably via
a web-page. The demo version must make it possible to evaluate the
features of the tool that are presented in the paper.

Moreover, a tool paper must present a tool that has not been presented
before as a tool paper in the proceedings of PETRI NETS. And the tool
must be of sucient interest for the community; this could be either
for the methods or algorithms it features, for its advanced usability or
smoother integration of dierent methods, for a new open architecture, or
for the general potential of being a widely used tool. In exceptional cases,
a tool that was presented at PETRI NETS already can be presented
another time. In such cases, the tool must have signicant new features,
and the paper must clearly point out the new features that justify another
presentation of that tool. Note that a tool can be a monolith, which
means that it is one piece of software with a clear functionality or it can
be a set of related tools, under one name. In the latter case we consider
each member of the set as a tool itself.

3 Format

A tool paper should clearly address the following issues:

1. The objectives of the software tool: A description of the purpose
and application domain of the tool, its intended use and application
scenarios, as well as the typical types of users.

2. The functionality of the tool: What can you do with the tool and
what is the input and resulting output (at an abstract level). This can
be done by means of use cases, preferably using a (small) running
example. Here also the essential methods and algorithms that are
used to transform input into output could be explained, again, at a
high level. Note that the paper should not present the theory behind
the tool, but instead should provide references to the literature.

3. The architecture of the software tool: How is the tool composed from
existing or new components and what are the main design decisions
and rationale underlying the tool? For each relevant new compo-
nent the functionality should be described and the interfaces with
other components. Further, if relevant, the information architecture
(logical structure of the database of the tool) should be described.
Finally, the runtime environment of the system should be specied.
Moreover, the interfaces to other tools and possible interchange of
data with other tools should be discussed.

4. Some interesting use cases that illustrate the working and use of the
tool and, possibly, a discussion on the experiences obtained while
using the tool. A detailed evaluation of a tool, however, is beyond
the scope of a tool paper; this could be a regular paper. If such
studies exist already, a tool paper is free to refer to them.



5. A comparison with other tools or a former version of the same tool.
A tool paper should clearly point out what its main characteristics
are and relate them to the features and characteristics of existing
tools. Also, a discussion of the limitations of the tool is welcome.

6. The paper should clearly indicate where the information can be
found to obtain, install, and start the tool, and what the license
conditions are. This information, possibly available on the web, must
provide enough details so that the intended type of user is able to
get the tool started.

Note that a tool paper is limited to 10 pages in LNCS format. Therefore,
each of these issues must be described in a compact way. For more de-
tailed information, the paper can refer to other publications and, prefer-
ably, some web pages. Still a tool paper must be readable in isolation,
i. e. it should be self-contained.

4 Example

There are many good examples of tool papers of PETRI NETS (see e.g.
the rst two references). Here, we use the rst one as an illustration of
these guideline: Petriweb: a Repository for Petri Nets [1]. We made
some changes to the original paper in order to better illustrate these
guidelines.

4.1 Objectives

Many tools exist to support the modeling process. One tool may be
better suited for designing models, another for analysis. Therefore, in a
typical development or research environment, multiple tools are used in
combination. This creates the need to work on the same models with
dierent tools. This can be addressed by dening a standard le format
that all tools can use.

Models need not only be shared by tools, but also by dierent users. For
instance, a model may need to be reviewed by a colleague of the designer.
We can send the model, and the colleague can open and use the model,
but as soon as new versions appear, it becomes hard to make sure the
right version is always used. Here, a shared location for the models is
needed.

A shared collection of models also encourages users to reuse existing
models or parts of them. This can be useful for dierent kinds of users.
Designers, who employ modeling to describe and design systems, can
use this to streamline the modeling process. Researchers and educators
can build up collections of models used as illustrations, e.g. examples or
counterexamples in proofs.

Most collections of models will be assembled in the context of a specic
project, with a small group of participants. But collections can also be
turned into company-wide or world-wide resources. In such cases, users
will rarely be familiar with all the models in the collection, and collections
can grow quite large.



The tool presented here is meant for the management of large collec-
tions of models, in particular for storage and retrieval of models and for
interfacing with tools to manipulate the models.

A specic domain of application is process modeling with Petri nets at
our university. Many examples in course material and exercises are reused
over the years; they are often recreated from memory or from paper. It
is attractive to make such examples available in a shared repository, ac-
cessible by both students and teachers. Here, the need for both browsing
and searching facilities is evident. Since users recognize Petri nets by
their graphical representation, browsing the collection can only be sup-
ported with a graphical browser. In larger collections, users also need to
lter the collection based on properties of the content. For instance, users
may want to nd examples of Petri nets that are bounded and contain
a deadlock.

4.2 Functionality

Petriweb is a web application for managing repositories of Petri nets. A
Petriweb installation can host many dierent collections, each with their
own administrators and users. Petri web has two sets of functions:

– Retrieval of Petri net models.

– Model management.

An example query Petriweb needs to support: Find the smallest net
present that is live, unbounded and free-choice. Another example, from
a developer’s perspective: Find a component with this interface and per-
forming task P. Queries must also include metadata, e.g. the author or
original publication of the net. We see that Petriweb must support dier-
ent kinds of properties: structural properties, e.g. the number of places;
behavioral properties, such as boundedness or liveness; and metadata.
Retrieval is performed by means of the following search criteria.

– Metadata
By allowing metadata as properties in Petriweb, the user uploading
the net can specify related information about it, such as when it was
created, by whom, etc.

– Application characteristics
They describe what the model is about: in what domain, for what
purposes, etc.

– Structural and behavioral properties
Simple structural properties can be determined by simple programs,
while more complex structural and behavioral properties such as free
choice, liveness, boundedness, can be determined with existing Petri
net analysis tools. Many such tools can be called as lters that take a
net as input and produce results as output. Petriweb can incorporate
this through automated properties. These are not specied by the
user while uploading the net, but instead, computed automatically
by invoking an XSLT stylesheet or an external command. This allows
non-trivial structural and behavioral properties to be determined
automatically; they can even be used in search criteria.



Fig. 1. Property based searching

– Transformations
This mechanism can also be used to automate conversions from
PNML to other le formats, e.g. the TPN format of Woan [2].
Calling an analysis tool is often preceded by a transformation, but
the results can also be presented to the user, e.g., as the input for
a client-side tool. In supporting transformations, Petriweb becomes
more than a repository: it functions as a mediator between dierent
tools and formats.

Fig. 1 shows the user interface of Petriweb to enter the search criteria.
Not only searching on properties is important, the graphical representa-
tion of a Petri net is also a great help in nding a specic Petri net. It
is hard to describe a Petri net in words, such that others can nd it; the
graphical display of a net is much easier to recognize. Therefore, search
results do not only list the Petri nets’ names and properties, but also
display them as diagrams. This allows a combination of searching and
browsing. Fig 2 shows the user interface of Petriweb for browsing the
search results.

The second group of functions concerns model management.

– Addition
Petriweb has been designed for public and private use. Petri nets can
be shared within a community. Anyone can register at Petriweb and
upload their own Petri nets. To allow this, a standard le format
is used for uploading Petri nets: the Petri Net Markup Language
(PNML). Before adding the Petri net, Petriweb rst checks its syntax
against a PNML syntax denition [3]. The net is then parsed and
stored.



Fig. 2. Search results

– Approval
While anyone can be registered at Petriweb and upload Petri nets
to it, nets go through a built-in approval mechanism. A net can be
in three possible states: uploaded, approved, or deleted. After a user
uploads a Petri net for a community, the community moderator re-
ceives a notication and can decide whether the Petri net is approved
or denied. In this way, collections remain manageable.

– Retrieval
Sharing the Petri nets also means that it is possible to download
and use the Petri nets from Petriweb. Petriweb supports this in two
ways, by allowing downloading the original uploaded le, or a le
generated from the parsed information. In this way it is possible to
serve as many tools as possible.

Petriweb is primarily intended to serve the public community by shar-
ing Petri nets. Users may not want to share their Petri nets with the
total public community, but only with a small group of users. Therefore,
Petriweb features a built-in mechanism to support communities. Each
registered user can request a community. After the Petriweb administra-
tor has approved the request, the user becomes moderator of the private
community and can invite users to join. In this way restricted project
areas can be dened and used, with the full search and properties func-
tionality of Petriweb.



Fig. 3. Data schema of Petriweb



4.3 Architecture

Petriweb is based on the data schema given in Fig. 3. It consists of three
parts:

– the structure and marking of the Petri net,

– the graphical information to display the Petri net, and

– the properties associated with the Petri net.

Petriweb supports component based models: denitions dene the be-
havior and structure, and can be instantiated in other denitions. Each
Petri net denition is either a transition denition or a (sub)net de-
nition. For every transition and subnet, its denition and its instance
are stored. Every instance is a part of a (sub)net. The relation between
ProcessInstance and Subnet depicts the hierarchy of the Petri net. Places
are also part of a (sub)net. A marking is stored in the MarkingInforma-
tion table. A Petri net can have a trace of markings (a ring sequence);
this information is stored in the StateHistory table. Multiple markings
and traces per net are supported. Arcs are not considered as separate
objects in the Petri net, but instead, both transitions and subnets have
connectable pins. These pins connect instances with places or other pins.
Due to the separation of denition and instance, a distinction is made
between formal and actual pins. A formal pin is part of the denition, an
actual pin is an instance of the formal pin. Graphical information is part
of the data schema, although not all relations are drawn in the gure.

Properties Since dierent uses of the repository gives need of dier-
ent kind of properties, Petriweb is designed to give each community or
installation its own properties, i.e. the moderator of each community or
installation needs to dene the properties which have to be lled in when
uploading a Petri net. In this way properties are as generic as possible.

In Petriweb properties are stored in the table Properties. Each property
belongs to a specic category. The table PropCategory contains informa-
tion about the dierent categories. The table NetProperty contains the
values of properties of (sub)nets in the repository. The table contains
some standard properties that should always be available for every Petri
net, such as its name, the location of its le and whether the (sub)net
is approved. For each property dened in Petriweb (thus an entry in the
table Properties) a column is present in this table. Automated proper-
ties can be derived either by applying a stylesheet (XSLT) or by calling
a tool on the command line. The output is parsed into the database. In
this way, any tool can be used to generate the value of a property, hence
supporting as many disciplines as possible.

Communities To support communities, it is of importance to sepa-
rate the dierent communities from each other, in such a way that there
is no connection between them. An advantage of this approach is that
only properties needed in the community are stored and shown. To sup-
port this, each community receives its own database to ll. In order to
administer the dierent communities, the data schema of Fig. 4 is used.



Fig. 4. Communities and their users

Fig. 5. Component model

Design The design of Petriweb is component based (Fig. 5). It is di-
vided into three main components: repository, viewer and checker. The
repository uses the viewer and checker. All components are designed and
implemented as stand-alone applications. It was a goal to provide eas-
ily installation on dierent machines.1. The implementation in PHP with
MySQL meets this goal. Properties are designed in such a way that third
party tools can be part of the repository. The implementation is such that
it is also possible to integrate the upload and search of Petri nets into
stand-alone tools, like an editor or analysis tool. The software is portable;
dierent Petriweb installations can be easily installed. A publicly avail-
able installation of Petriweb can be found at http://www.petriweb.org.
Also the source code is publicly available, and can be downloaded from
the public website.

4.4 Use case

Typical uses of Petriweb is to search for Petri nets with certain prop-
erties, to verify a hypothesis, or disproof a property. See Fig. 2 and 1.
The found Petri nets can be tested on the hypothesis. If all Petri nets
satisfy it, one has to search for a counter example by hand. If such a
counter example is found, the user can upload it, and specify meta data
of the Petri net. Petriweb then calculates the automated properties. Af-
ter the moderator approves the Petri net, it is added to Petriweb, and
retrievable for other users.

1 Petriweb has been tested on two platforms: Linux and Microsoft Windows.



4.5 Comparison with other tools

There are various solutions for sharing data. One of them is to use stan-
dard version control software, such as CVS or Subversion. However, these
systems still require the users to be familiar with the organization of the
material in terms of le names and directory structure. For larger col-
lections, or an open-ended user base, this does not suce. Additional
facilities for searching and browsing will be required that employ knowl-
edge of the model contents. Therefore, specialized repository software
is needed that combines general le management with domain specic
knowledge.
The only tool we know of that has comparable functionality is the work-
ow patterns website (cf. www.workowpatterns.com). The dierence is
that this site is only meant for retrieval of patterns and not for mediator
type functions of Petri web. Hence, in the workow patterns website is it
not possible to upload patterns, to share patterns in a closed community
or to retrieve patterns based on some property.

4.6 Installation

Petriweb can be used by logging in as user op www.petriweb.org. There
the user can create his own collection of models and he can use the exiting
set of public models. If one wants to obtain the sources please contact
info@petriweb.org.

References

1. R. Goud, Kees M. van Hee, R. D. J. Post, and Jan Martijn E. M.
van der Werf. Petriweb: A repository for petri nets. In Susanna
Donatelli and P. S. Thiagarajan, editors, ICATPN, volume 4024 of
Lecture Notes in Computer Science, pages 411–420. Springer, 2006.

2. H. M. W. Verbeek, T. Basten, and W. M. P. van der Aalst. Diagnosing
workow processes using Woan. The Computer Journal, 44(4):246–
279, 2001.

3. Michael Weber and Ekkart Kindler. The Petri Net Markup Language,
April 2002.


